

Campagna di Sensibilizzazione inerente ai danni derivanti dall'utilizzo indiscriminato della mascherina

ATTENZIONE!!!

Rilevato che la maggioranza della popolazione fa attualmente uso indiscriminato della mascherina facciale a causa della grande influenza terroristica costante dei media di regime, affinché sia ripristinata/risanata la comune logica, visto lo studio pubblicato dall'associazione L'Eretico sui danni derivanti da questa pratica, ci sentiamo obbligati a formulare il presente avviso da diffondere a chiunque, affinché immediate misure sanitarie che preservino l'effettiva salute fisica e mentale della popolazione, siano immediatamente messe a disposizione di chi potrebbe essere attualmente affetto da: ipercapnia, acidosi, cefalee, capogiri a causa dell'uso indiscriminato della mascherina, che, favorisce anche lo sviluppo di cellule tumorali, dermatiti micotiche, aumenta l'eventuale carica batterica e/o virale altrimenti inerme, che si accumula negli alveoli polmonari del Soggetto, causando anche danni psicologici

Riportiamo a questo proposito il testo della certificazione prodotta dal dottor Roberto Santi:

"....L'uso della mascherina induce ipercapnia ed acidosi che riducono la saturazione di ossigeno nel sangue, esponendo con maggiore facilità ad ogni tipo di aggressione batterica o virale. Questo ancor di più in soggetti che hanno difficoltà respiratorie per motivi cardiaci, Broncopolmonari, anche a genesi allergica o psicosomatica.

L'acidità favorisce altresì lo sviluppo di cellule tumorali, sono frequenti anche cefalee e capogiri indotti da questo stato.

Inoltre l'umidità che si forma al di sotto della mascherina è in grado di produrre dermatiti micotiche e di aumentare l'eventuale carica batterica e/o virale altrimenti inerme, che si accumula negli alveoli polmonari del Soggetto."

inoltre Per informazioni riguardo le implicazioni derivanti dal mancato rispetto del presente avviso si ravvisa l'art 28 cost. e l'art. 414 c.p., Artt 658, 640, 608 c.p.p., Costituzione Italiana Artt 1,2,4,10,13,16,32,41,54,78

Un iniziativa promossa dal Popolo della Madre Terra PMT per saperne di più visita: www.popolodellamadreterra.it e scarica l'intero studio sui danni derivanti da l'utilizzo delle mascherine su https://www.leretico.org/formulari-legali/2779/

È l'uso delle mascherine, esteso a tutta la popolazione, più dannoso che utile?

Uno studio sulla CO₂ inalata con l'uso di dispositivi di copertura naso e bocca e una mini-review.

Autori: Bernhard Oberrauch* (dott. architetto ed esperto bioedilizia), Marco Adami (fisico), Ulrich Gutweniger (psicologo), Elisabetta Galli (medico), Veronika Dellasega (medico), Heike Müller (medico), Bernhard Thomaser (medico), Maria Paregger (medico), Roberto Cappelletti* (medico).

*corrispondenza agli autori: bernhard.oberrauch@archiworldpec.it; roberto.cappelletti.03yu@tn.omceo.it

Introduzione. In Italia, dal 4 novembre 2020, l'obbligo di portare una mascherina è stato esteso all'aperto e, per gli studenti di più di 6 anni, a tutto il periodo di permanenza a scuola. Per verificare se i sintomi lamentati dopo prolungato uso delle mascherine, quali perdita di concentrazione, cefalea, spossatezza, difficoltà di respiro, capogiri, mal di gola, siano realmente dovuti all'uso delle mascherine, abbiamo voluto realizzare alcuni test per rilevare la quantità di anidride carbonica (CO₂) che si inspira nel microambiente della mascherina, nell'ipotesi che l'eccesso di questo gas possa giustificare, almeno in parte, i disturbi lamentati.

Recentemente è stato pubblicato dalla Provincia di Bolzano uno studio sulla "Qualità dell'aria con l'uso di dispositivi di copertura del naso e della bocca"¹. Poiché le conclusioni di questo studio, come sono state comunicate al vasto pubblico ("le mascherine non sono dannose"), non ci sembravano in linea con quanto riportato dagli stessi risultati della Provincia, abbiamo voluto anche confrontarli con i nostri dati.

Abbiamo quindi cercato di capire il funzionamento della mascherina e la ragione delle variazioni di risultati per le varie tipologie di dispositivi. Abbiamo infine svolto una ricerca in letteratura su altri possibili danni (aumento delle infezioni da batteri e funghi, aspetti psicologici, compensazione del rischio, aumento del lavoro respiratorio etc.) dovuti ai dispositivi di copertura del naso e della bocca.

Metodo. Abbiamo misurato la CO₂ re-inspirata in 24 individui sani di varie età (media 48, range 5-88 anni), con i diversi tipi di mascherine, esclusivamente nella posizione seduta. Come strumento di misura è stato utilizzato l'analizzatore portatile di anidride carbonica G100, Geotech (www.geotechuk.com), dotato di una pompa interna da 100 cm3/min, di un sensore ad infrarossi con un campo di misura dello 0-20% in volume ed una precisione del 1%. Il tubicino veniva posto al di sotto del naso e la pompa era attivata all'inizio dell'inspirio e spenta alla fine. Lo stesso per le misurazioni durante l'espirio.

Risultati: vengono qui riportati in sintesi i risultati delle misurazioni di CO₂ in inspirio in posizione seduta (ai fini della comparazione con i risultati della provincia di Bolzano):

per la <u>mascherina chirurgica</u>: valore medio di CO_2 **7292** ppm (range 5000 – 13.000) versus **3.350** ppm (range 950 – 5320) dello studio della provincia di Bolzano.

Per le <u>mascherine FFP2-N95</u>: valore medio di CO_2 **11.000** ppm (range 7000 – 15.000) versus **3.850** ppm (range 1220 – 8080) dello studio della provincia di Bolzano.

Per le <u>mascherine di stoffa/scaldacollo</u>: valore medio di CO_2 **11.500** ppm (range 5000 – 24.000) versus **4590** ppm (range 1480 – 10.280) dello studio della provincia di Bolzano.

<u>Senza maschera</u>: valore medio CO_2 **3143** ppm (range 2000 – 5.000) versus **590** ppm (range 50 – 2250) dello studio della provincia di Bolzano.

La discrepanza tra i nostri risultati e quelli dello studio della Provincia di Bolzano non può essere giustificata unicamente dal fatto che in quest'ultimo siano stati sottratti i valori di CO₂ dell'aria ambiente, e neppure dalla presenza di un diverso margine di errore degli strumenti di misura. Infatti lo strumento di misura utilizzato della Provincia (Horiba_PG250) ha una accuratezza simile a quella utilizzato da noi (G100).

Il nostro studio conferma che le maschere con una grande cavità (FFP2) sono peggiori delle maschere più aderenti. Il peggiore risultato con le mascherine di stoffa rispetto alle mascherine chirurgiche è verosimilmente dovuto alla minor permeabilità delle mascherine di stoffa. Parlare o peggio cantare con la mascherina aumenta la quantità di CO₂ nell'inspirio + espirio. Nelle tabelle n. 4, 5 e 6 (e relativi grafici) si riportano i valori delle misurazioni nei vari soggetti, nelle diverse situazioni (solo espirio, solo inspirio e misto inspirio-espirio), con le diverse tipologie di mascherine.

Risultati della mini-review. Abbiamo esaminato più di 40 studi sull'utilità delle mascherine nel prevenire le infezioni respiratorie, non trovando evidenze di efficacia nell'estendere l'uso a tutta la popolazione, al di fuori delle strutture sanitarie²⁻⁴⁷. Al contrario, alcuni studi sottolineano come, ad esempio per le mascherine di stoffa, la ritenzione di umidità, il riutilizzo e una scarsa filtrazione possano addirittura aumentare il rischio di infezione³⁹. Uno studio su migliaia di individui durante i pellegrinaggi alla Mecca, ha rilevato più infezioni respiratorie nel gruppo che portava costantemente le mascherine⁴⁶. Abbastanza frequenti appaiono forme dermatologiche tipo "maskne" (acne da mascherina). Sono stati rilevati anche fenomeni di "compensazione del rischio", causati da un falso senso di sicurezza generato dall'uso della mascherina⁴⁸. Infine occorre rilevare l'aumento della resistenza respiratoria e il conseguente incremento del lavoro dei muscoli respiratori con l'uso delle mascherine FFP2^{36,49}. L'OMS attualmente raccomanda alle persone di indossare maschere facciali solo se si hanno sintomi respiratori o se si deve prendersi cura di qualcuno con sintomi: è lasciata ai singoli stati la facoltà di eventualmente estenderne le indicazioni.

Effetti psicologici. La mascherina è un simbolo di pericolo che, coprendo il viso, impedisce di far conoscere l'altro, e riconoscere nell'altro le espressioni e le emozioni umane. Limitando così la mimica facciale, si riduce il contatto emotivo con la conseguenza di rendere i bambini - ma ciò riguarda anche gli adulti - deboli, ansiosi, insicuri ed anche immunodepressi poiché, lo stato psichico rappresenta un elemento fondamentale a garanzia di una buona risposta immunitaria.

Dal punto di vista psicologico, le norme sanitarie previste dal Governo che sono imposte a bambini sani, risultano altamente nocive e causa di possibili disturbi psichici permanenti. Educare i bambini a temere la reciproca vicinanza, risulta fortemente dannoso per lo sviluppo della loro autostima. Inoltre, stabilire una correlazione tra i loro comportamenti e la possibile morte di familiari amati, cosa difficile da dimostrare nel concreto, può danneggiare profondamente il loro relazionarsi con chi li circonda.

Anche negli adulti l'utilizzo della mascherina suggerisce rappresentazioni di malattia, contagio, e morte, e fa ritenere che la vicinanza umana sia un pericolo per la vita provocando malessere psicologico, e limitando la possibilità di un reale funzionamento creativo del cervello. Gli psicologi

stanno osservando un drastico aumento di disturbi d'ansia, isolamento sociale, attacchi di panico, e casi di suicidio⁵⁰.

Conclusioni: Per le persone che indossano una mascherina, <u>ogni valore misurato di CO₂</u> (sia nel presente studio, sia in quello della Provincia di Bolzano) è fuori dai valori accettabili per la qualità dell'aria indoor negli edifici scolastici (tabella 2)⁵¹ e supera anche i livelli ammessi nei luoghi di lavoro (5.000 ppm di CO₂). I sintomi lamentati dai pazienti dopo uso prolungato sono spiegabili con gli elevati livelli di anidride carbonica³⁷ e con il minor apporto di ossigeno. Alti valori di CO₂ nell'aria ambiente (tabella 3), appaiono oltretutto incompatibili con un ottimale <u>apprendimento scolastico</u>. Si conclude pertanto che <u>l'uso della mascherina è dannoso per la salute</u> ed è da raccomandarne l'uso solo per brevi periodi, escluse specifiche situazioni dove il rischio sia particolarmente alto.

Limitazioni. lo strumento impiegato, rileva la CO2 solo a partire da 1.000 ppm. Perciò questo non ha consentito misurazioni accurate della quantità di CO2 nell'aria ambiente, dove si sono svolti i test. Le misurazioni del presente studio, a differenza di quello della provincia di Bolzano (che si è svolto nei mesi estivi, in un ambiente ben arieggiato), sono state realizzate nel mese di ottobre in un ambulatorio con le finestre socchiuse, situazione che riproduce meglio la condizione che vive un bambino all'interno della sua classe al banco.

Scuola e mascherine: Con l'ultimo DPCM del 4/11/2020, l'obbligo di portare la mascherina a scuola continuativamente per i bambini sopra i 6 anni, vale per tutto il territorio nazionale, indipendentemente dal rischio di trasmissione, su cui invece l'OMS consiglia di basare le decisioni⁵². Imporre la mascherina a tutti gli scolari per tutto il periodo di permanenza a scuola (unico esempio in Europa fra 6 e 11 anni), nella presunzione di prevenire un'infezione, non appare affatto giustificato. Esistono diversi motivi per non imporre l'obbligo continuativo della mascherina agli scolari: [1] il Numero Necessario di Trattamenti (NNT) per prevenire una infezione è piuttosto alto (l'Istituto Norvegese di Sanità Pubblica ha calcolato che per prevenire una infezione per settimana, 200.000 individui devono usare la mascherina)¹⁹; [2] il COVID ha un decorso benigno nei bambini nella stragrande maggioranza dei casi; [3] l'evidenza di una trasmissione a livello scolastico del COVID non è apparsa finora importante (i bambini trasmettono molto meno degli adulti)⁵³ e infine [4] l'assenza di evidenze scientifiche sui vantaggi dell'uso delle mascherine in comunità ^{2-47,54}.

La mascherina ha certamente un valore simbolico, per far meglio comprendere con un mezzo visibile che esiste un nemico invisibile³⁰.

Però, per quanto il valore simbolico sia importante, appare "inaccettabile" costringere i nostri bambini a respirare intollerabili quantità di CO₂ sotto la mascherina per tutta la durata della permanenza a scuola e spesso durante l'ora di educazione fisica.

Diffusibilità della CO₂. Gli alti livelli di CO₂ re-inalati <u>senza mascherina</u> (tabella 1), contraddicono la falsa idea che la CO₂ sia facilmente diffusibile, infatti in condizioni di calma di vento, in un ambiente poco arieggiato, la quantità di CO₂ re-inalate sono molto elevate, anche senza mascherina. Questo perché il ristagno di CO₂ attorno alla faccia impiega del tempo per disperdersi. La CO₂ è 1,5 volte più pesante dell'aria e questo rende ragione anche del suo facile accumulo negli ambienti chiusi. Dunque la diffusibilità della CO₂ all'interno degli ambienti, non va confusa con la facile diffusibilità della CO₂ attraverso la membrana dell'alveolo e la parete dei capillari.

Tossicità dell'anidride carbonica (CO₂). I danni alla salute da CO₂ sono studiati per lo più nell'adulto (animale e uomo), in condizioni sperimentali, solo nel breve-medio periodo. All'innalzamento della CO₂ segue una acidosi del sangue e dei tessuti; è noto infatti che acqua + CO₂ formano acido carbonico con conseguente abbassamento del pH. Il rene impiega qualche giorno, con l'aumento della escrezione urinaria di acidi e il riassorbimento di bicarbonati, a compensare l'acidosi e a riportare il pH ai valori fisiologici (7,36–7,44). Se però l'aumento della CO₂ è intermittente (come avviene con l'uso delle mascherine), il compenso renale non avviene e l'acidosi non viene compensata interamente.55 Cosa comporti questo nel lungo periodo nel bambino non è noto. Si sa per certo che i bambini hanno una richiesta di ossigeno di due-tre volte quella degli adulti. Inoltre la maschera aumenta lo spazio morto respiratorio in maniera inversamente proporzionale all'età: in un adulto la mascherina aumenta del 53% lo spazio morto respiratorio (che nell'adulto normalmente è di 150 ml con 500 – 640 ml di volume respiratorio corrente a riposo), in un bambino di 8 anni l'aumento è del 78%, in un bambino di un anno del 122%. Poiché la concentrazione di CO₂ negli spazi morti è di 45.000 ppm, ovviamente questo comporta un aumento più marcato di inalazione di CO₂ nei bambini.⁵⁶ L'ambiente acido sia sanguigno che polmonare induce numerose alterazioni fisiologiche quando si fanno esercizi con la mascherina: 1) variazioni metaboliche, 2) stress cardiorespiratorio (aumento del polso e della pressione), 3) diminuzione della funzione renale, 4) ridotta risposta immunitaria e 5) alterazioni del metabolismo cerebrale e della salute mentale (diminuzione della perfusione cerebrale e inibizione degli amminoacidi eccitatori)²⁷. L'innalzamento cronico della CO₂ nell'organismo è stato messo in relazione anche con malformazioni fetali, danni del sistema riproduttivo, infiammazione tessutale polmonare e cardiovascolare e il cancro.⁵⁵ Non da ultimo per importanza, vi sono possibili danni neurologici.55,57 Certo è che, con valori > di 5.000 ppm di CO₂ registrati con le mascherine in questo studio, ai quali corrispondono sintomi quali sonnolenza, perdita di concentrazione, spossatezza, cefalea (tabella 3), appaiono oltremodo incompatibili con un ottimale apprendimento scolastico.

Referenze

- 1. https://ambiente.provincia.bz.it/downloads/AppaBZ-Studio-qualita-aria-mascherine-ver24-ita.pdf
- 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493952/pdf/annrcse01509-0009.pdf
- 3. Ritter MA, Eitzen H, French ML, Hart JB. The operating room environment as affected by people and the surgical face mask. Clin Orthop Relat Res. 1975 Sep;(111):147-50. doi: 10.1097/00003086-197509000-00020. PMID: 1157412. https://pubmed.ncbi.nlm.nih.gov/1157412/
- 4. Ha'eri GB, Wiley AM. The efficacy of standard surgical face masks: an investigation using "tracer particles". Clinical Orthopaedics and Related Research. 1980 May (148):160-162 https://europepmc.org/article/med/7379387
- Laslett LJ, Sabin A. Wearing of caps and masks not necessary during cardiac catheterization. Cathet Cardiovasc Diagn. 1989
 Jul;17(3):158-60. doi: 10.1002/ccd.1810170306. PMID: 2766345. https://onlinelibrary.wiley.com/doi/abs/10.1002/ccd.1810170306
- Tunevall, T.G. Postoperative wound infections and surgical face masks: A controlled study. World J. Surg. 15, 383–387 (1991). https://doi.org/10.1007/BF01658736 https://link.springer.com/article/10.1007/BF01658736
- Skinner MW, Sutton BA. Do anaesthetists need to wear surgical masks in the operating theatre? A literature review with evidence-based recommendations. Anaesth Intensive Care. 2001 Aug;29(4):331-8. doi: 10.1177/0310057X0102900402. PMID: 11512642. https://journals.sagepub.com/doi/pdf/10.1177/0310057X0102900402
- Lahme T, Jung WK, Wilhelm W, Larsen R. [Patient surgical masks during regional anesthesia. Hygenic necessity or dispensable ritual?].
 Der Anaesthesist. 2001 Nov;50(11):846-851. DOI: 10.1007/s00101-001-0229-x. https://europepmc.org/article/med/11760479
- 9. Figueiredo AE, Poli de Figueiredo CE, d'Avila DO. Bag exchange in continuous ambulatory peritoneal dialysis without use of a face mask: experience of five years. Adv Perit Dial. 2001;17:98-100. PMID: 11510307. http://www.advancesinpd.com/adv01/21Figueiredo.htm
- 10. Bahli ZM. Does evidence based medicine support the effectiveness of surgical facemasks in preventing postoperative wound infections in elective surgery? J Ayub Med Coll Abbottabad. 2009 Apr-Jun;21(2):166-70. PMID: 20524498. https://www.semanticscholar.org/paper/Does-evidence-based-medicine-support-the-of-in-in-Bahli/751acd427c20c8dc7d1fbc1b45eead104286f481
- 11. Sellden E. Is routine use of a face mask necessary in the operating room? Anesthesiology. 2010 Dec;113(6):1447. doi: 10.1097/ ALN.0b013e3181fcf122. PMID: 21068655. https://pubs.asahq.org/anesthesiology/article/113/6/1447/9572/Is-Routine-Use-of-a-Face-Mask-Necessary-in-the
- 12. Webster J, Croger S, Lister C, Doidge M, Terry MJ, Jones I. Use of face masks by non-scrubbed operating room staff: a randomized controlled trial. ANZ J Surg. 2010 Mar;80(3):169-73. doi: 10.1111/j.1445-2197.2009.05200.x. PMID: 20575920. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1445-2197.2009.05200.x
- 13. Vincent M, Edwards P. Disposable surgical face masks for preventing surgical wound infection in clean surgery. Cochrane Database Syst Rev. 2016 Apr 26;4(4):CD002929. doi: 10.1002/14651858.CD002929.pub3. PMID: 27115326; PMCID: PMC7138271. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD002929.pub2/full
- 14. Carøe T. [Dubious effect of surgical masks during surgery]. Ugeskrift for Laeger. 2014 Jun;176(27):V09130564.

https://europepmc.org/article/med/25294675

- 15. Salassa TE, Swiontkowski MF. Surgical attire and the operating room: role in infection prevention. J Bone Joint Surg Am. 2014 Sep 3;96(17):1485-92. doi: 10.2106/JBJS.M.01133. PMID: 25187588. https://pubmed.ncbi.nlm.nih.gov/25187588/
- 16. Da Zhou C, Sivathondan P, Handa A. Unmasking the surgeons: the evidence base behind the use of facemasks in surgery. J R Soc Med. 2015 Jun;108(6):223-8. doi: 10.1177/0141076815583167. PMID: 26085560; PMCID: PMC4480558. https://journals.sagepub.com/doi/pdf/10.1177/0141076815583167
- 17. Tom Jefferson, Mark Jones, Lubna A Al Ansari et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Part 1
 Face masks, eye protection and person distancing: systematic review and meta-analysis medRxiv 2020.03.30.20047217; doi: https://doi.org/10.1101/2020.03.30.20047217
 https://www.medrxiv.org/content/10.1101/2020.03.30.20047217v2
- 18. Xiao J, Shiu E, Gao H, et al. Nonpharmaceutical Measures for Pandemic Influenza in Nonhealthcare Settings—Personal Protective and Environmental Measures. *Emerging Infectious Diseases*. 2020;26(5):967-975. doi:10.3201/eid2605.190994. https://wwwnc.cdc.gov/eid/article/26/5/19-0994 article/26/5/19-0994 article
- 19. https://www.cebm.net/covid-19/masking-lack-of-evidence-with-politics/
- Wieland T. A phenomenological approach to assessing the effectiveness of COVID-19 related nonpharmaceutical interventions in Germany. Saf Sci. 2020 Nov;131:104924. doi: 10.1016/j.ssci.2020.104924. Epub 2020 Jul 21. PMID: 32834516; PMCID: PMC7373035. https://www.sciencedirect.com/science/article/pii/S0925753520303210

- 21. https://web.archive.org/web/20200510161346/https://www.uea.ac.uk/about/-/new-study-reveals-blueprint-for-getting-out-of-covid-19-lockdown
- 22. https://www.cidrap.umn.edu/news-perspective/2020/04/commentary-masks-all-covid-19-not-based-sound-data
- 23. Radonovich LJ Jr, Simberkoff MS, Bessesen MT, Brown AC, Cummings DAT, Gaydos CA, Los JG, Krosche AE, Gibert CL, Gorse GJ, Nyquist AC, Reich NG, Rodriguez-Barradas MC, Price CS, Perl TM; ResPECT investigators. N95 Respirators vs Medical Masks for Preventing Influenza Among Health Care Personnel: A Randomized Clinical Trial. JAMA. 2019 Sep 3;322(9):824-833. doi: 10.1001/jama.2019.11645. PMID: 31479137; PMCID: PMC6724169. https://jamanetwork.com/journals/jama/fullarticle/2749214
- 24. Smith JD, MacDougall CC, Johnstone J, Copes RA, Schwartz B, Garber GE. Effectiveness of N95 respirators versus surgical masks in protecting health care workers from acute respiratory infection: a systematic review and meta-analysis. CMAJ. 2016 May 17;188(8):567-574. doi: 10.1503/cmaj.150835. Epub 2016 Mar 7. PMID: 26952529; PMCID: PMC4868605. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868605/
- 25. Bin-Reza F, Lopez Chavarrias V, Nicoll A, Chamberland ME. The use of masks and respirators to prevent transmission of influenza: a systematic review of the scientific evidence. Influenza Other Respir Viruses. 2012 Jul;6(4):257-67. doi: 10.1111/j.1750-2659.2011.00307.x. Epub 2011 Dec 21. PMID: 22188875; PMCID: PMC5779801. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779801/
- 26. http://www.asahi.com/ajw/articles/13523664
- 27. Chandrasekaran B, Fernandes S. "Exercise with facemask; Are we handling a devil's sword?" A physiological hypothesis. Med Hypotheses. 2020 Jun 22;144:110002. doi: 10.1016/j.mehy.2020.110002. Epub ahead of print. PMID: 32590322; PMCID: PMC7306735. https://www.sciencedirect.com/science/article/pii/S0306987720317126
- 28. Person E, Lemercier C, Royer A, Reychler G. Effet du port d'un masque de soins lors d'un test de marche de six minutes chez des sujets sains [Effect of a surgical mask on six minute walking distance]. Rev Mal Respir. 2018 Mar;35(3):264-268. French. doi: 10.1016/j.rmr.2017.01.010. Epub 2018 Feb 1. PMID: 29395560. https://pubmed.ncbi.nlm.nih.gov/29395560/
- 29. Beder A, Büyükkoçak U, Sabuncuoğlu H, Keskil ZA, Keskil S. Preliminary report on surgical mask induced deoxygenation during major surgery. Neurocirugia (Astur). 2008 Apr;19(2):121-6. doi: 10.1016/s1130-1473(08)70235-5. PMID: 18500410. https://pubmed.ncbi.nlm.nih.gov/18500410/
- 30. Klompas M, Morris CA, Sinclair J, Pearson M, Shenoy ES. Universal Masking in Hospitals in the Covid-19 Era. N Engl J Med. 2020 May 21;382(21):e63. doi: 10.1056/NEJMp2006372. Epub 2020 Apr 1. PMID: 32237672. https://www.nejm.org/doi/full/10.1056/NEJMp2006372. Epub 2020 Apr 1. PMID: 32237672. https://www.nejm.org/doi/full/10.1056/NEJMp2006372. Epub 2020 Apr 1. PMID: 32237672.
- 31. https://files.fast.ai/papers/masks_lit_review.pdf
- 32. Julii Suzanne Brainard, Natalia Jones, Iain Lake, Lee Hooper, Paul Hunter. Facemasks and similar barriers to prevent respiratory illness such as COVID-19: A rapid systematic review. MedRxiv 2020.04.01.20049528; doi: https://doi.org/10.1101/2020.04.01.20049528
 - https://www.medrxiv.org/content/10.1101/2020.04.01.20049528v1
- 33. Desai AN, Mehrotra P. Medical Masks. JAMA. 2020 Apr 21;323(15):1517-1518. doi: 10.1001/jama.2020.2331. PMID: 32129797. https://jamanetwork.com/journals/jama/fullarticle/2762694
- **34.** https://www.bfarm.de/SharedDocs/Risikoinformationen/Medizinprodukte/DE/schutzmasken.html;jsessionid=B20604DBD2D3212DBEBF08A76F966AA4.2_cid329
- 35. https://web.archive.org/web/20200509230932/https:/www.oralhealthgroup.com/features/face-masks-dont-work-revealing-review/
- 36. https://aaqr.org/articles/aaqr-13-06-oa-0201.pdf
- 37. https://www.primarydoctor.org/masks-not-effect
- 38. https://mediatum.ub.tum.de/602557
- 39. MacIntyre CR, Seale H, Dung TC, Hien NT, Nga PT, Chughtai AA, Rahman B, Dwyer DE, Wang Q. A cluster randomised trial of cloth masks compared with medical masks in healthcare workers. BMJ Open. 2015 Apr 22;5(4):e006577. doi: 10.1136/bmjopen-2014-006577. PMID: 25903751; PMCID: PMC4420971. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420971/
- 40. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ; COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020 Jun 27;395(10242):1973-1987. doi: 10.1016/S0140-6736(20)31142-9. Epub 2020 Jun 1. PMID: 32497510; PMCID: PMC7263814. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31142-9/fulltext

- 41. https://royalsociety.org/-/media/policy/projects/set-c/set-c-facemasks.pdf
- 42. Christopher T Leffler, Edsel B Ing, Joseph D. et al. Association of country-wide coronavirus mortality with demographics, testing, lockdowns, and public wearing of masks. Update August 4, 2020. medRxiv 2020.05.22.20109231; doi: https://doi.org/10.1101/2020.05.22.20109231 https://www.medrxiv.org/content/10.1101/2020.05.22.20109231v5
- 43. https://www.thieme-connect.com/products/ejournals/abstract/10.1055/a-1174-6591
- 44. Feng S, Shen C, Xia N, Song W, Fan M, Cowling BJ. Rational use of face masks in the COVID-19 pandemic. Lancet Respir Med. 2020 May;8(5):434-436. doi: 10.1016/S2213-2600(20)30134-X. Epub 2020 Mar 20. PMID: 32203710; PMCID: PMC7118603. https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(20)30134-X/fulltext
- 45. https://www.cdc.gov/mmwr/volumes/69/wr/pdfs/mm6936a5-H.pdf
- 46. Alfelali M, Haworth EA, Barasheed O, et al. Facemask versus no facemask in preventing viral respiratory infections during Hajj: a cluster randomised open label trial. SSRN (Lancet preprints)
- 47. Bundgaard JS, Raaschou-Pedersen DET et al. Effectiveness of Adding a Mask Recommendation to Other Public Health Measures to Prevent SARS-CoV-2 Infection in Danish Mask Wearers: A Randomized Controlled Trial. Ann Intern Med. 2020 Nov 18. doi: 10.7326/M20-6817. Epub ahead of print. PMID: 33205991. https://www.acpjournals.org/doi/10.7326/M20-6817? url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
- 48. Mantzari E, Rubin GJ, Marteau TM. Is risk compensation threatening public health in the covid-19 pandemic? BMJ. 2020 Jul 26;370:m2913. doi: 10.1136/bmj.m2913. PMID: 32713835. https://pubmed.ncbi.nlm.nih.gov/32713835/
- 49. Kim JH, Roberge RJ, Powell JB, Shaffer RE, Ylitalo CM, Sebastian JM. Pressure drop of filtering facepiece respirators: How low should we go? Int J Occup Med Environ Health. 2015;28(1):71-80. doi: 10.13075/ijomeh.1896.00153. PMID: 26159949; PMCID: PMC4499853. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499853/
- 50. Mund-Nasenschutz-Verordnungen https://www.psycharchives.org/handle/20.500.12034/2751 Prof. Hüther, Gerald: Wie Masken Verhalten ändern https://www.youtube.com/watch?v=YqTGIZdIjpY&feature=youtu.be Bindungsmodelle https://www.eltern-kind-bindung.net/fachpersonen/postpartaler-bereich/bindungsmodelle/
 - Consiglio Nazionale dell'Ordine degli Psicologi, La salute psicologica è un diritto! https://www.psy.it/la-salute-psicologica-e-un-diritto-cittadini-chiedono-azioni-concrete-a-protezione-della-loro-salute-psicologica.html
- 51. https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/4113.pdf (pag. 35-39)
- 52. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-children-and-masks-related-to-covid-19
- 53. Lewis D. Why schools probably aren't COVID hotspots. Nature. 2020 Nov;587(7832):17. doi: 10.1038/d41586-020-02973-3. PMID: 33139909. https://www.nature.com/articles/d41586-020-02973-3
- 54. Donzelli A. Mascherine chirurgiche in comunità/all'aperto: prove di efficacia e sicurezza inadeguate. E&P Repository https://repo.epiprev.it/index.php/download/mascherine-chirurgiche-in-comunita-allaperto-prove-di-efficacia-e-sicurezza-inadeguate/
- 55. Adeline Guais, Gerard Brand, Laurence Jacquot et al. Toxicity of carbon dioxide: a review. *Chem Res Toxicol* 2011 Dec 19;24(12):2061-70. doi: 10.1021/tx200220r. Epub 2011 Jul 19
- 56. https://mauricejanich.de/heike-sensendorf/
- 57. Sumon Das, Zhongfang Du, Shira Bassly, Lewis Singer, Alfin G Vicencio. Effects of chronic hypercapnia in the neonatal mouse lung and brain. *Pediatr Pulmonol*. 2009 Feb;44(2):176-82. doi: 10.1002/ppul.20971.

	Studio indip	endente	Studio provincia di Bolzano			
t'po di dispositivo	valore medio CO2 range		walere medie CO.	range		
Maschera chirurgica	7292 ppm	(5000 – 13.000)	3.350 ppm	(950 – 5320)		
FFP2-KN95	11.000 ppm	(7000 – 15.000)	3.850 ppm	(1220 – 8080)		
Maschera di stoffa/ scaldacollo	11.500 ppm	(5000 – 24.000)	4590 ppm	(1480 – 10.280)		
Senza maschera	3143 ppm	(2000 – 5.000)	590 ppm	(50 – 2250)		

Tabella 1. Sommario dei risultati: misure della CO₂ con i vari tipologie di mascherine, in inspirio. Comparazione con la provincia di Bolzano.

Legenda. ppm = parti per milione (1.000 parti per milione corrispondono ad uno 0,1 %). Normalmente la concentrazione di CO_2 nell'aria ambiente è dello 0,04% (400 ppm), negli spazi chiusi 0,1% (1.000 ppm).

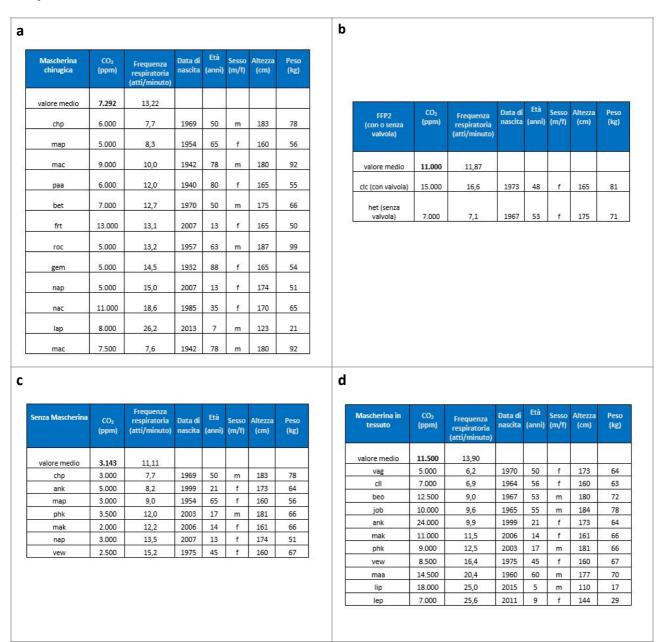

Valori guida per concentrazioni di CO₂ nell'aria indoor negli edifici scolastici (Ad hoc working group 2008 Umweltbundesamt Berlin)					
concentrazioni di CO2 (ppm)	valutazione igienica	raccomandazioni			
minore di1000	Igienicamente insignificante	Nessun intervento ulteriore			
1000 - 2000	Igienicamente rilevante	Intensificare la ventilazione (aumentare il volume di flusso dall'esterno o i ricambi d'aria)			
maggiore di 2000	Igienicamente <u>inaccettabile</u>	Verificare le possibilità di ventilazione e se necessario cercare misure ulteriori			

Tabella 2. Valori guida per concentrazioni di CO₂ nell'aria indoor negli edifici scolastici.

valori di CO2	cintomi
da 0,5 % (5.000 ppm)	Sonnolenza e perdita di concentrazione, senso di spossatezza
da 2 % (20.000 ppm)	Cefalea, aumento della frequenza del respiro e del polso
da 4 % (40.000 ppm)	Intorpidimento, nausea, vertigini
da 8 % (80.000 ppm)	Convulsioni, coma, morte per arresto cardiaco dopo 30-60 min (nell'adulto)
oltre 30% (300.000 ppm)	Perdita rapida di conoscenza e morte in pochi minuti.

Tabella 3. Sintomi in rapporto alle concentrazioni di CO₂

Inspirio

Tabella 4. Valori di CO₂ nell'inspirazione, per soggetto e media, con i vari tipo di mascherine: a) mascherina chirurgica; b) FFP2; c) senza mascherina; d) mascherina in stoffa

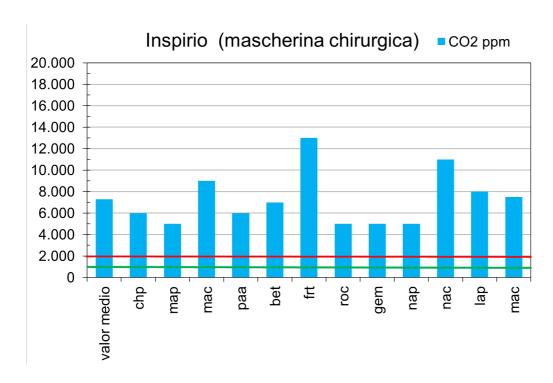


Figura 1a. valori di CO₂ durante l'inspirazione con mascherina chirurgica

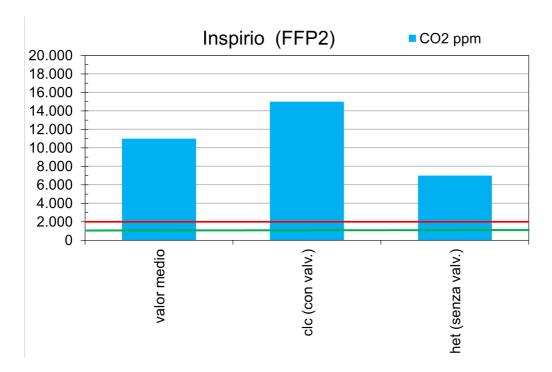


Figura 1b. valori di CO₂ durante l'inspirazione con mascherina FFP2

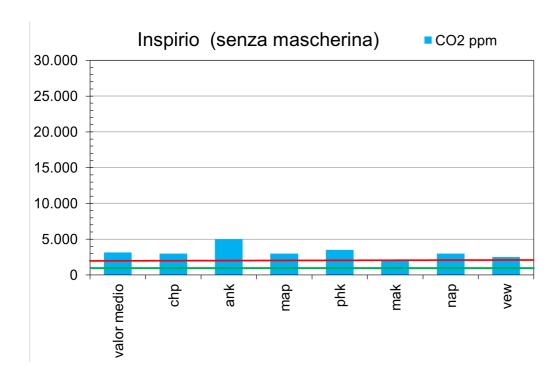


Figura 1c. valori di CO₂ durante l'inspirazione senza mascherina

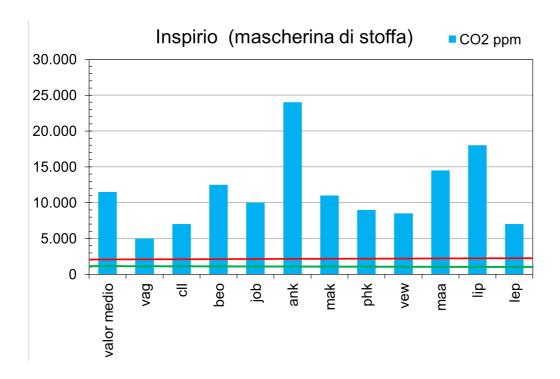
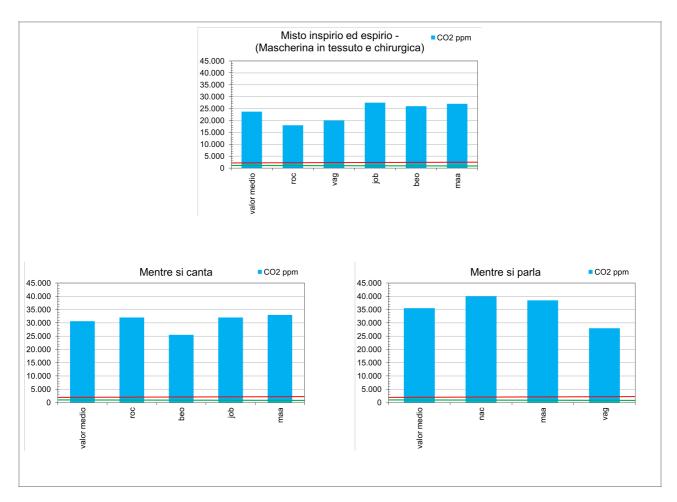


Figura 1d. valori di CO₂ durante l'inspirazione con mascherina di stoffa

Inspirio ed espirio (misti)

Mascherina in tessuto e chirurgica	CO ₂ (ppm)	Frequenza respiratoria (atti/minuto)	Data di nascita	Età (anni)	Sesso (m/f)	Altezza (cm)	Peso (kg)
valore medio	23.700	12,79		8	70		
roc	18.000	11,5	1957	63	m	187	99
vag	20.000	7,0	1970	50	f	173	64
job	27.500	9,8	1965	55	m	184	78
beo	26.000	16,2	1967	53	m	180	72
maa	27.000	19,5	1960	60	m	177	70


a) inspirazione ed espirazione mista con i diversi tipi di mascherina

Mascherina in tessuto e chirurgica	CO ₂ (ppm)	Frequenza respiratoria (atti/minuto)	Data di nascita	Età (anni)		Altezza (cm)	Peso (kg)
valore medio	30.625						() ()
roc	32.000		1957	63	m	187	99
beo	25.500		1967	53	m	180	72
job	32.000		1965	55	m	184	78
maa	33.000		1960	60	m	177	70

Mascherina in tessuto e chirurgica	CO ₂ (ppm)	Frequenza respiratoria (atti/minuto)	Data di nascita	Età (anni)		Altezza (cm)	Peso (kg)
valore medio	35.500	13,13					
nac	40.000	13,1	1985	35	f	170	65
maa	38.500		1960	60	m	177	70
vag	28.000		1970	50	f	173	64

c) mentre si canta mentre si parla

Tabella 5. Valori di CO₂ nel caso di "inspirazione ed espirazione mista", a) con respiro normale (calmo), b) mentre si canta e c) mentre si parla. Si è voluto vedere quali concentrazioni risulterebbero se non ci fosse differenziazione tra inspirazione ed espirazione. I risultati NON sono stati presi in considerazione nella valutazione

Figure 2. grafici riassuntivi che mostrano i valori di CO₂ durante l'**inspirazione e espirazione** con i diversi tipi di mascherine, con respiro tranquillo, mentre si parla e mentre si canta.

Espirio

b а Mascherina chirugica Peso (kg) CO₂ (ppm) Data di Peso (kg) FFP2 (con o senza valvola) Frequenza 39.300 14,53 valore medio 30.000 15,8 1932 88 165 54 valore medio 44.250 12,79 31.000 11,5 1957 63 m 187 99 roc 1973 81 clc (con vaivola) 40.000 18,7 48 165 35.000 10,4 1942 78 180 mac m 92 40.000 11,1 1954 65 56 map 48.500 6,9 1967 53 het (senzavalvola) 40.000 12,0 1940 80 f 165 55 frt 40.000 12,7 2007 13 165 50 7 40.000 28,0 2013 m 123 21 lap 41.000 10,4 1970 50 175 66 bet m 43.000 20,6 1985 35 170 65 nac 13 53.000 12,7 2007 174 nap d C Etá Sesso (anni) (m/f) Altezz (cm) Peso (kg) Peso (kg) 26.375 valore medio 17.23 43.889 valore medio 14.10 phk 12.000 9,6 2003 17 m 181 66 29.000 19,5 1960 60 m 177 70 28.500 38,7 2013 123 21 35.000 53 72 lap m beo 16,2 1967 m 180 32.500 7,9 14 f 9 144 29 mak 2006 161 66 lep 38.000 23,7 2011 f 32.500 12,7 2007 13 174 51 43.000 22,5 2015 m 17 nap lip 45.000 1970 173 64 vag 7,0 50

Tabella 6. Valori di CO₂ nell'espirazione, per soggetto e media, con i vari tipo di mascherine: a) mascherina chirurgica; b) FFP2; c) senza mascherina; d) mascherina in stoffa

job

mak cll

phk

48.000

48.000

49.000

60.000

9,8

11,1

5,4

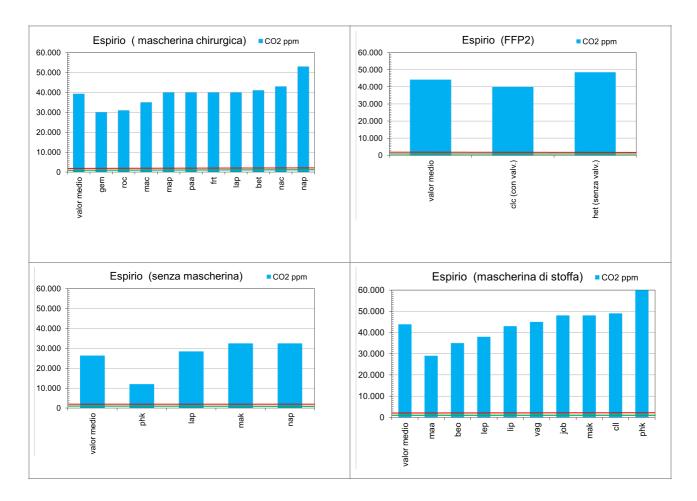
1965 55 m 184

2006

1964 56

2003

14


78

66

63

161

160

Figure 3. Grafici riassuntivi che mostrano i valori di CO₂ durante l'**espirazione** con i diversi tipi di mascherine